Theory and Applications of an
Orthogonal Rational Basis Set!

JAC. Weideman
Department of Mathematics
University of Stellenbosch
Stellenbosch 7600
South Africa®

Abstract. This paper reviews the theory and applications of the functions ¢, (5} =
(L4 12)" /(1 - tr )", which form a complete and orthogonal basis set for La(IR). It is
shown how these fonetions may be used for the computation of integral Lransforms and
certain special functions. The numerical solution of some differential equations is also

digcussed,

1. Introduction. Many technigques in scientific computing are based on series
expansions of the form

f(x) =3 andulz), ze€D. (1)

The basis set {g, } s typically complete and orthogonal in some appropriate space
defined on the domain £, For example, if [2 is a finite interval Chebyshev or
Legendre expansions are commonly used. Il periodicity of f(z) may be assumed
a. Fourier series is more appropriate. For the semi-infinite interval £ = [(,00) the
Laguerre functions are candidates, and on the real line 1) = (—oc, 00) the Hermite
or sine (cardinal) functions may be used. There exists, however, a lesser-known
basis set which may be used as alternative to Hermite and sine functions on the real
line. T'his basis sel has some attractive features which we would like to review in
this paper.

The basis set under consideration consists of rational functions, defined for all

re R by
m“[I}Z = w4 ”EZ, F = =i (3]

These functions are complete and orthogonal in Ly(IR); see [10] for a proof of com-
pleteness and Sectl. 2 for & proof of orthogonalitv. In Fig. 1 we show a few of the
functions ¢,(x). Observe that the functions are oscillatory, with an increase in fre-
quency as |n| increases. The oscillations are modulated by the envelope 1/+/1 + %,
as indicated by the dashed curve.

As for the history of the functions (2), they could be traced to Wiener's book
on time series, published in 1947 [21]. The use of these [unctiony for computational
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Figure 1: The basiz functions ¢,(z).



purposes dates to the 1980s, and it is associated with the names of Christov [3.6]
and Bovd [2,34]. In addition to the work of these two authors the present author
lias made some coniributions in this area. This paper is a summary ol these results,
collected from the papers [11.17,18,19,20].

The survey is organized as follows: In Sect, 2 we review implementation delails
and show how the Fast Fourier Transform (FFT) may be exploited for computa-
tional purposes. The computation of integral transforms is surveyed in Sect. 3, We
focus on the author’s method for the computation of the Hilbert transform |19].
However, we also show the connection with two other methods: Weber's method
for the computation of the Fourier transform [15] and Weeks" method for inversion
of the Laplace transform [16], We believe the interconnection between these three
methods is illuminated here for the first time. In Sect. 4 we discuss a series expansion
[or the computation of the complex error function, This expansion derives [rom the
fact that the complex error function may be expressed as the Hilbert transform of
the Gaussian exp{—r?). In Sect, 5 we discuss the solution of a few differential equa
tions, as well as some theoretical results involving the eigenvalues of differentialion
operators based on (2).

2. Implementation. One attractive property of the basis sel (2) is the [acl
that it can be implemented via the FFT. This gives it an edge over a competilor
like Hermite expansions for which no practical fast transform is known Lo exiat, The
key is the coordinate transformation

w 1-+rr

¢ =% = tan .'jﬂ

1 —ig 2
which maps the infinite line to a finite interval:
T € |[—oo,00] = #€[-rm 7]

Thus the original series may be viewed as a Fourier series in the new variable ¢

L]

ﬂf] = Z ﬂnmn{i'] — f{i:”:l — ‘1-_1‘} = z ﬂnfinﬂ.

== L= —0
This connection with Fourier series allows one to prove the orthogonality relation
B .
] @n{_I)G’mL‘TJ dr = F"-K’1'|.,rl'1.
-0

where the overbar denotes complex conjugation, and é,, ., is the Kronecker delta. The
orthoponality relation provides an integral formula for the expansion coeflicients:

a, = é/:: flz)o.(z) dzx. (3)

For computational work the series is truncated to®
N=1 N1

fl#)= Y aséalz). or flz)(1—iz)= 3 ™. (4]

n=—> n=—

M'he term corresponding to n = & 15 omitted Lo ensure that all terms in the series appear as
comjugale pairs.



For a given f(x) one needs to compute the expansion coefficients a,. The integral
formula (3) may be used. but the most practical procedure is that of collocalion.
We introduce the points

T |

fl. = —=—, = :I;—mEﬂ i==N N =

F i
and require thal equality in (4) 1s achieved at each of these points. This vields the

linear system
flz; )1 —2z,) = Z ane™ =N N =, ()

Note that the point at infinity is included as a collocation point. Typically the
function satisfies f(x) = of|z|™") as * — +oo, in which case Lhe left-hand side is
sel Lo gero when 3 = —N. The series on the right is recognized to be nolhing butl a
discrete Fourier transform. One may therefore solve for the a, by taking Lhe inverse
translorm, and this may be achieved with the FFT.

I summary, if the function f{r] 18 known, the coellicients a, can be computed
[eom (5) with an inverse FFT, On the other hand, if the coeflicients a,, are given, the
function f(x) may be evalnated at the collocation points x, with the forwaed 17T
Bolth of these processes require O(N log V) operations as opposed o the O N#)
required by a direct summation of (5).

3. Computation of Integral Transforms. Many orthogonal functions are
eigenfunctions of differential operators. For example, the relation ﬁt’.”‘"” = ket
shows that the Fourier polynomials {¢*} are eigenfunctions of the derivalive ap-
erators %,%, ete. Chebyshev, Legendre, and Hermite functions may likewise be
viewed as the eigenfunctions of certain linear differential operators. The question
arises whether the rational functions (2) can be associated with some well-known
linear operator in this manner. The answer 1s ves, and the operator in question is

the Hilbert transform in Ly(IR). This transform is defined by the smgular integral

H=) o

ool ==

Fily) = —Flf

where PV denotes the principal value. A quick residue calculation proves that the
funetions { ¢, } are eigenfunctions of this operator, with eigenvalues +:. Details may
be found in [19].

Theorem 1 For anyn € Z
flz) =on(2) = Fxuly) = tsga(n)o.(y).

Noter we define sgn(0) = 1.



This theorem suggests a practical procedure for computing the Hilbert transform:

e o

flz) = z a.dalz) =  Fxly)= Z rsgn(n)agi,(y). (3]

fle=— 0 = —rx

As discussed i Sect. 2, these series are truncated to =N < n < ¥ — |, and the
coeflicients a, are computed from (5) via the inverse FFT. This algorithm has two
crrors associated with 112 ficst, the truncation of the imfinite series, and secand, the
computation of the a, via the FFT rather than the integral formula (3), These
errors can be estimated separately, and this vields the following error bound, taken
from |19]:

Theorem 2 Let Fyl(y) be as defined in (6), and let Fy(y N) be dls finite truncalion
(=N <n < N —1), with the expansion cocflicients a,, computed via (5). Asswme
[

fhat }: |r:”| < oo, Then, for each real y,

W)

P&
14 EERE 4 £ & —— I.- }
'IH“” }er.u- N ]I s m _%. [y |

This error bound confirms the intuitive notion that if the coellicients ., decrease
rapidly as n — +oo, the method is accurate, even with a small number of terms. 11
is however not possible 1o give a complete classification of the rate of decay in the
ay 10 terms of elementary properties of f(x), but a few model functions have been
analyzed in [19]. The results are as follows:*

flz) iy

1/(1 421) O(r™),r =2 — |
exp(—z?) Ofexp(—3n*?))
sech(z) O(exp(—2n'?))

sin(z)/(1 + 27) | Q(n=3)
sin(x)/(1+ ') | O(n=4)
exp(—|z|) O(n*)

The convergence rate is best if f(x) is a rational function of the farm plx)/ql=),
with deg{q) = deg(p). and g(z) has no real zeros. Then it can be shown that the
coeflicients a,, decrease at least geometricallv. 1e., g, = O(r") forsome 0 < r < 1. If]
on the other hand, f(r) is infinitely differentiable and decays al leasl exponentially
fast as @ — oo then integration by parts can be used to show that a, = O(n~%) for
each positive mteger {. This is consistent with the second and third entries of Lhe
table, which were obtained by applving a steepest descent analysis to Lhe integral
(3), When the function is oscillatory as ©r — +oc, or if there exists a discontinuity
in Lhe derivative, the convergence is slowest of all as the last three entries in the
table show,

AAN the coethcients in the table satsfy Ja, | = lozyZal; therefore we congider only o > [,



In order to improve the convergence rate it is recommended that one uses a
rescaled basis set defined by
dolz) = dulz/p).

[lere p is a real parameter that may be adjusted to maximize the accuracy. This
rescaling stretehes the collocation points to 7, = ptan %ﬂj__ bt the implementation
details discussed mn Sect. 2. as well as Theorems | and 2, remam valid with only
minor modifications,
To see how the accuracy depends on the parameter p, we consider the test
problem
() = sech(x), Fylx) = tanh(x) + < [r.-" (} + !-[) - (I - {;—)]
: v 4 Ar 4 2
where (z) = "(2)/T'(z) s the digamma function, Fig. 2 shows the error, delined
Ly
error = I”i]'?ﬁ' [ F3lx;) — Fulz;s ¥, (7)

ag o function of p. With N = 16,32, and 64 the optimal value of p appears Lo be 3,4,
and 6, roughly, and the best error improves from around 107 to L0~ 4o 1O, Jven
il one picks p non-optimally the accuracy can still be quite good. For example, lixing
pal the value 10 the error improves from around 107 to 107" to 107", Unfortunately,
finding the optimal relationship between p and N requires a non-trivial asymptolic
estimate. We shall elaborate on this issue below, More comprehensive numerical
tests, including a comparison with ather methods for computing Hilbert teansforms,
may be found in [19].

10°
10° t N=16
S
E I o
107
_[D-iﬁt %54
0 5 10

p

Figire 2: The error in the numerical computation of the Hilbert transform of sech(z)
as a function of p and N.

After working out the details of this method for computing Hilbert |ransforms
the author discovered that it is in fact closelv related to two other methods: Weeks'



method for the inversion of the Laplace transform [16], and Weber's method lor
Fourier transforms [13]. We believe the fact that all three of these melhods are
hased on expansions involving the rational basis set (2) 15 pointed out here for the
first time,

The Fourier and Laplace transforms are respectively defined by

F.:UII'—_[_:.r"’f[.r}ff,r. f-;;{n=_[."""f[f}n’:r1 e . (8)

Both of these transforms may be computed by expanding f{z) in terms of {o,}.
[ollowed by termwise integration. Before sketching the details, however, we choose
Lo modify the basis set (2) temporarily to

dalz) = (=1)"p ' éalz/p).

This modification facilitates the comparison with the expansions found in [15,16].
[t means we are now looking at expansions of the orm

)= Y a— ( - *”) . (9)

ne—ds MR \IZ4p

For the computation of the Fourier transform we insert this series into the liesl
integral in (8). Assuming that summation and integration can be interchanged, one
obtlains

Ol

'h‘f{” = 2‘: "r.-'-illln[!}1 [lﬂ.:l

n=—2

P i TR R
() =f _t (u‘ '“) dr,
e e ol R U E i

I is a straightforward exercise to evaluate this integral using residues, with contours
involving the usual semi-cireles in the upper or lower half-planes, depending on the
sign of {. The result 1s

where

Ize P L. (2pt) f>0andn =0
to(ty =4 2re®L_, (—2pt) t<Dandn <0
i otherwise,

where L, () represents the Laguerre polynomial of degree . This is identical to
the formula in [15], but derived via a different route.

The algorithm proceeds as follows: Given f(x), the expansion coefficients can be
computed with the FFT from an expression similar to (3). This is followed by an
evaluation of the Laguerre series (10). The numerical experiments reported in [16]
have shown this procedure to be highly aceurate. An indication of the high accuracy
is provided by the model example f(z) = 1/(1 + 7%), Fx(t) = 2re™ M with p = |

bThe Lagucrre polynomials. defined by Ly(z) = et
the evaluation of the residues atl the n-th order poles

[e=#z"], enler into the ealeulation in

|



the algorithm gives the exact result with only two terms in the series (10). Some
additional unpublished numerical results, corresponding to the Lest example

fla)=e, Er(t) = Jre M,

are shown in Ilig. 3. The figure shows level curves of the error, defined as in (7).
as a function of p and N, The labels on the curves indicate the log,, of the error.
The dashed curve represents p = 2°0/N, which was shown to be the optimal
relationship between p and N for functions of the form exp(—ir?) x poalynomial(i);
see [18].

Error Contours

Figure 3: Level curves of the error in the numerical computation ol Lhe Fourier
transform of exp(—x?).

Turning to the inversion of the Laplace transform, this involves the computation
of the Bromwich integral
] el tr - !
_f{mp:r e le(z)dz, x>,
Zal Je—ee
where ¢ = ¢y (the Laplace convergence abscissa). Next, expand F(z) on the line
Re(z) = ¢ as a rational series of the form (9):

. = l it —p\*
: i) = .
Fele+it)= > Hn“_i_p( ) :

n=—0oC tt -t-p

Inserting this expression into the Bromwich integral leads to a residue caleulation
similar to the one for the Fourier transform alluded to above. The result is

o

flz) == Z ase” 7" Lo(2pzx),
=0 -

which represents the celebrated method of Weeks, often quoted as one of the most

efficient methods for inverting the Laplace transform. For more details ol the Weeks

method we refer fo [12,16], and for comparisons with other algorithms we refer to

7.8].




4. Computation of the Complex Error Function. The complex error

function, which arises routinely in astrophysics, is defined by [9,14]:

2 2 e 2
w(z) =€ *erlc(—1z);, where eric(z) = —/ e dl, el
R ks

Important special cases include

2 g = !
W) = erfe(z), and  Imw(z)) = %ﬂ" f e dl, =€},
w H

the latter of which is referred Lo as Dawson’s integral.
The function w(z) may also be represented by the integral

—p7

I o
TJ"{:}l = :] :—_——IIIL

(11)

. . - . — 4 i i .
valid for each z in the upper half-plane. We expand ¢ as a weighted series in
{d, ), followed by termwise integration. This vield a series expansion for w(z), wilh

some altractive computational properties. The details are as follows,
We consider the expansion

> L
(p~ —E-t‘!]f.-"J = i, (I ) .

n=— p— 1t

with the coeflicients given by

p o= flt) (p—it)”
ty = —f = dt.
Tl wp?+ 2 \p+it

—_—
[
=

o

(13)

Next we insert (12) into (11). The validity of interchanging summation and integra-

tion was justified in [18], and thus

w(z)= Y au(z),

n=—a

, O I | p+it\" 1
#Jﬂ[z)::[ ) 2 - 'dt'
- p + 8 \p—tl] z2—1

A residue calculation vields

where

e n=_{
§ p-iz

b fm) — 2 piz "

i (2) s (p--i:) n >0
{ n < 0,

d
Ao 5o {- B 1 . 9 g_:ﬂ p+!-3 T : T}I i
wliz) = Trto—iz) | Bt ey ,  dmiz) = 0.

= p—1z

(14)



As before the series (14) is truncated at n = N, and again the question is how
to select a p for any given N such that the accuracy 1s optimized. In particular, we
would like to maximize the rate decay over the coellicients retained in the expansion,
namely og....,an. One way to achieve this 1s to maximze the rate of decay in ap,
ihe last coeflicient retained in the expansion, as N — oc. The details of this
calculation are presented in [18], and the optimal relationship was shown fo be
Fr== : VN, (We have verified the validity of this estimate in a different context in
Fig. 3.) Assuming this relationship between p and N, it was shown in [18] that

ay = O(rY), with r=y2-1, (13)

sugpesting high accuracy when (14) is truncated at n = V.
The algorithm for computing w(z) proceeds as follows: For a given & and M
N the coellicients a,, are rnlnptlt.ud with the aid of the FI'T {rom

i M=1 2 _ = : : :
y = — z (p” + fj}:_!’ e O T
2M 1==M41
where p = 27 PN, and
] T ;
[, = pran 0], t?,:!r—f;, g==M+ e M=1.

This summation lormula 1s of course the trapezoidal rule approximation of the in-
tegral (13) with 2M pridpoints. Once the coefficients have been caloulated, w(z)
may be computed from (14) by evaluating a polynomial of degree ¥ in the variable
(p+ 2}/ (p—1z).

Two comments on this algerithm are in order: First, for any given ' the coefhi-
cients ¢,, may be computed once and for all. Second, we recommend using M = 2N
in practice. This ensures that the error in the trapezoidal rule approximation of the
integral is on the same order of magnitude as the truncation errar in the series.

As a numerical test of this method we offer Fig. 4. taken from [18]. We have
computed the values of w(z) for z = 10%", for several thousand values lying in the
range —6 < L <6, 0 < # < =x/2. The relative error in each approximation was
computed using the TOMS Algorithm 680. which computes w(z) accuralely to al
least 14 significant digits [13]. In Fig. 4 the level curves of the relative error are
shown as a [unction of £ and 6. The label on each curve represents the log , of the
relative error and is therefore an indication of the number of correct digits in the
approximalion.

Amn inspection of Fig. 4 reveals the following: There is a region near the imag-
inary axis where the accuracy 1s exceptionally high. The accuracy also improves
significantly as |z| — oc. If one retains an additional eight terms in the series an
extra three digits of accuracy, on average, are gained. This is consistent with the
estimate (15).

The fact that the expansion (14) gives reasonably high accuracy more-or-less
uniformly in the first quadrant gives it an edge over other expansions. A Taylor

10



Figure 4: Level curves of the relative error in the series expansion of w{z) when
truncated at n = N. The label on the coordinate axes refers to £, where z = 107¢*.
The label on the level curves refers to the log,, of the relative error.

11



series does well near the origin, but breaks down for large |z]. Continued fractions,
by contrast, vield high accuracy for large |z| but become inefhicient near z = (L
Algorithm 680, which was used to compute the relative error in Fig, 4, vonsists of a
combination ol several such expansions tailored for various regions in the complex
plane. Our method, being based on a single expansion, is therefore more efficient. in
vectorized implementations such as the Matlab code given in [18],

The expansion (14) not only represents an eflicient way of computing w(z), but
also of its integral [ w((}d{. In particular, the antiderivative relation

i d j:i-e:r'_ | p+ iz "
Ypndz \p—1z] P+ \p—iz

can he invoked fo integrate (14) term-by-term:

[: () di = \,}#]”H (P ;”) - ;—lg;[_p} - Z <L (p it i::) . Im(z) =0, (16)

g0 piloi A \p—1z

where .

alp) = E i p (/F ::“"v.rfr[:;]rfu — -—l—- ln_n;{'.!]l)

' i | o S Vi !
Using the antiderivative to compute the integral [ w()d¢ s justified by the facl
that w(z) defines an analytic Tunction in the upper half-plane. A table of values of
g(p) for various values of N (with p = 2-/N) may be found in [20].

Also represented in [20] are numerical tests on the following two impartant inte-

grals which are special cases of (16):

g | ? [P 3 )= e | e Py
Lir) jUE Lf dtdx, ILi(r) ,LE fy e dt dy

In [14] these two integrals were tabulated for 0 < r < 6 to ten digits of accuracy.
Our expansion was [ound to yield identical results with only 24 terms in the series.

We conclude this section with a caveat: the expansion (16) may be numerically
unstable for small |z[. A remedy is suggested in [20].

5. Solution of Differential Equations. To solve dilferential equations with
the basis set (2} we need to construct discrete differential operators. These operators
are obtained via

fB ) =Y aeel?(z) = Y aPs.(z), k=1,2,...,
which defines a relationship:
Hi:’ = D.'t{ln.

To construet [ we apply loganthmice differentiation to (2):

diy mn tin+1)

=
dr "11 414z | =iz

L, | ;
= EIEHGH—F + {Eﬂ +: ”‘P‘n R {T"- + l]¢n+llr

12



where we have used the identities 2¢,, /(1 £ 12} = ¢, + ¢z This defines the first
derivalive operator [y as

! _ .
all) = Zlnaq_y + (2n + Vo + (0 + Vawps] = Dya,,
I}y 15 similarly obtained:

g | i s o
uil‘] = _T|”{” —la,_g +4n a,_; + (6n° + 6n 4+ 2]a,
+4(n+ 1) a0+ (n+2)(n + Laa] = Daay.

When the series s truncated to —N < n < N — |, the ifinite operalors £ turn
into finite matrices, with £, skew-hermitian and tridiagonal, and £ real symmelric
and pentadiaganal.

The matrices 1) are nsed to selve differential equations in the following manner.
r_:lll]ﬁ]dl"l. Ell,:ll' |'Zx".|]]|}|[?. 1h" ]31'1]!]'{'1]'

—u"(x) + ulz) = f(x), —oc< < o0,
Assuming that w(r), flr) € Lz(IR), the problem may be approximated by
(=D + Ta=b.

Here s the 2N x 2N identity matrix, and a and b are the vectors ol expan-
sion coefficients of ulx) and [(r) respectively. The matrix — Dy + [ is symmetric
and banded (and also positive delinite as will follow from Theorem 4 below), anil
therefore the linear system may be efliciently solved. Numerical results lor the case
u(e) = sech(z), flzr) = 2sech®(x), have been presented in [17]. More realistic
differential equations have been solved in [3.5,6],

In addition to stationary problems such as the one above, evolution equalions
like the one dimensional wave and diffusion equations may also be solved. These
equations are respectively defined by

W= Uy WS Uy —O0IE TS Oy
Logether with suitable initial conditions u(z.0) € L;(IR). By considering

w(z,t) =Y aq(t)én(z),

the PDEs may be reduced to systems of ODEs:

de da =
— = Dyay, d.; = [ha,. I':li']
When these systems are truncated to —N < n < N =1, any of the standard methods
for initial-value problems may be used to integrate with respect to time. This idea

was applied to the Benjamin-Ono equation

wp+uts + Frlu ) =0, —o <2 < og,

13



which describes weakly nonlinear waves on the interface between two Huids of differ-
eni density [11]. The Hilbert transform Fy was calculated by the method described
in Sect. 3. This approach was found to vield highly accurate results, provided the
waves do nol move too far from the origin. As the waves move out the increase
in the grid-spacing causes a lack of resolution and the accuracy deteriorates (recall
r; =tlanwy/2N).

We conclude this section with some results of a theoretical nature, In many
applications, particularly those invelving stability analyses, it is necessary 1o have
information on the eigenvalues of the differentiation operators £, 'The simples)
example is the hmear systems (17). When an explicit method is used fo integrate
{hese systems, it is necessary that all of the eigenvalues of Dy (ov Dy}, multiplied
with the time step At lie within the region of absolute stability of the method, IT
not, the solution grows unboundedly as t — 20, This stability constraint poses a
testriction on the maximum allowable time step.

To find the eigenvalues of Dy, 1t is perhaps best to look at the explicit display
of the tridiagonal matrix [y

l(]—:!.-"r' Al \l

1 =N
-5 -4
N T DR
i = e | )
D= ¢ . (18)
1 3 2
p. 3
N—1
\ N—1 ay -1/

It suffices to find the eigenvalues of the sub-matrix in the lower right-hand block.
This 1s done in the usual manner, by finding a recurrence formula for the character-
istic polynomial Py(A). One obtains

PX)=1(2n—1=MPoa(A) = (n=1P,_o(A); n=1,..0N,

which is recognized to be the recurrence relation for the Laguerre polynomials.
Therefore Py{A) = Lxy(A). We have thus proved the following theorem, first pub-
lished in [17]:

Theorem 3 The rigenvalues of the matriz Dy are distinet, pure imaginary, and
given by

1 "
Aj=zipyy §= 10N,

where the p,; are the N distinct roots of the Laguerre polynomial Ly (x).

Turning to the second derivative infinite operator it follows that [ = Df, so
the eigenvalues of 173 are the squares of the eigenvalues of ;. However, due to Lhe

14



truncation £y # 17 for the finite matrices. Nevertheless, it is possible to bound the
eipenvalues of the matrix g in terms of the roots of the Laguerre polynomials, as
was demonstrated in [17].

Theorem 4 The cigenvalues of the matriz Dy oceur in pates, ave real and wegidive,
and given by

wheve
i < fby < Py

ant q,, v, are the j-th and j + 1-sf roots of Ly(z) and Ly (x) respectively.

6. Conclusions and Open Questions. We have shown the basis set {¢, |
to be a highly effective tool in the computation of integral transforms and certain
special functions related to the complex error function. In addition, we have surveyed
the applications of this basis set to the solution of differential equations posed on
thie real line. We suspect that there are many potential applications of this approach
awaiting discovery.

As lor open questions, it is unclear under which conditions the rational basis sel
catl e guaranteed to be superior 1o its main rivals, namely Hermite expansions or
gine functions, For example, for the test function f{x) = 1/{1 + x*) the rational ba-
sis sel cannot be improved upon, sinee this function can equivalently be expressed
as f(x) = %E_.")U{Iil + if.a][r}l_ In the language of Fourier analvsis this [unction is
band-timited with respect to the basis set {o,}. By contrast Hermite or sine fune-
fions require many terms to represent a slowly decaying funetion such as this one
accurately. On the other hand, if the function is of the form ™ x polynomial(x),
Hermite functions will undoubtedly be superior.

A comprehensive comparison of the accuracy of expansions such as Lhese will
involve a study of the rate of decay in the expansion coethcients 0, as n — 200 A
complete characterization of this rate of decay in terms of elementary properties
of f(x) is out of reach, unfortunately, even in the case of ordinary Fourier series.
We feel, however, that analyzing model functions such as the ones presented in the
Table in Sect. 3 is a start. The list needs to be extended significantly however.

Related to the question of accuracy is the choice of the optimal parameter p.
A specific theoretical estimate has been carried out in detail [18], the accuracy of
which was verified in Fig. 3. But a general theory is nonexistent. One appraoch
o finding the optimal parameter might be an experimental attack: presumably
one could compuie a few sets of expansion coefficients for various p, followed by
some oplimization strategies, the aim being to maximize the rate of decay over the
expansion coefficients a, retained in the expansion.

Whether or not these open guestions can be resolved is unclear. What is clear,
however, is that we have presented sufficient evidence that the rational basis sel
1} is a powerful computational tool, and ready to take its rightful place among
the better known basis sets appropriate for the real line.
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